面对大数据,各种处理系统层出不穷,各有特色.总体来说,我们普开数据可以总结出的发展趋势,以下是小编为你整理的怎么学好大数据
(1) 数据处理引擎专用化:为了降低成本,提高能效,大数据系统需要摆脱传统的通用体系,趋向专用化架构技术.为此,国内外的互联网龙头企业都在基于开源系统开发面向典型应用的大规模、高通量、低成本、强扩展的专用化系统;
(2) 数据处理平台多样化:自2008年以来克隆了Google的GFS和MapReduce的Apache Hadoop逐渐被互联网企业所广泛接纳,并成为大数据处理领域的事实标准.但在全面兼容Hadoop的基础上,Spark通过更多的利用内存处理大幅提高系统性能.而Scribe,Flume,Kafka,Storm,Drill,Impala,TEZ/Stinger,Presto,Spark/Shark等的出现并不是取代Hadoop,而是扩大了大数据技术的生态环境,促使生态环境向良性化和完整化发展.
(3) 数据计算实时化:在大数据背景下,作为批量计算的补充,旨在将PB级数据的处理时间缩短到秒级的实时计算受到越来越多的关注.
大数据学习的(必备技能)
1. 数据结构
2. 关系型数据库
3. Linux系统操作
4. Linux操作系统概述
5. 安装Linux操作系统
6. 图形界面操作基础
7. Linux字符界面基础
8. 字符界面操作进阶
9. 用户、组群和权限管理
10. 文件系统管理
11. 软件包管理与系统备份
12. Linux网络配置
主要掌握Linux操作系统的理论基础和服务器配置实践知识,同时通过大量实验,着重培养学生的动手能力。使学生了解Linux操作系统在行业中的重要地位和广泛的使用范围。在学习Linux的基础上,加深对服务器操作系统的认识和实践配置能力。加深对计算机网络基础知识的理解,并在实践中加以应用。掌握Linux操作系统的安装、命令行操作、用户管理、磁盘管理、文件系统管理、软件包管理、进程管理、系统监测和系统故障排除。掌握Linux操作系统的网络配置、DNS、DHCP、HTTP、FTP、SMTP和POP3服务的配置与管理。为更深一步学习其它网络操作系统和软件系统开发奠定坚实的基础。与此同时,如果大家有时间把javaweb及框架学习一番,会让你的大数据学习更自由一些。
学大数据要注意的事项
特征。特征分析是从数据库中的一组数据中提取出关于这些数据的特征式,这些特征式表达了该数据集的总体特征。如营销人员通过对客户流失因素的特征提取,可以得到导致客户流失的一系列原因和主要特征,利用这些特征可以有效地预防客户的流失。
变化和偏差分析。偏差包括很大一类潜在有趣的知识,如分类中的反常实例,模式的例外,观察结果对期望的偏差等,其目的是寻找观察结果与参照量之间有意义的差别。在企业危机管理及其预警中,管理者更感兴趣的是那些意外规则。意外规则的挖掘可以应用到各种异常信息的发现、分析、识别、评价和预警等方面。
Web页挖掘。随着Internet的迅速发展及Web 的全球普及, 使得Web上的信息量无比丰富,通过对Web的挖掘,可以利用Web 的海量数据进行分析,收集政治、经济、政策、科技、金融、各种市场、竞争对手、供求信息、客户等有关的信息,集中精力分析和处理那些对企业有重大或潜在重大影响的外部环境信息和内部经营信息,并根据分析结果找出企业管理过程中出现的各种问题和可能引起危机的先兆,对这些信息进行分析和处理,以便识别、分析、评价和管理危机。
Mesos(分布式资源管理器)
Mesos诞生于UC Berkeley的一个研究项目,现已成为Apache项目,当前有一些公司使用Mesos管理集群资源,比如Twitter。
与yarn类似,Mesos是一个资源统一管理和调度的平台,同样支持比如MR、steaming等多种运算框架。
Tachyon(分布式内存文件系统)
Tachyon(/'tæki:ˌɒn/ 意为超光速粒子)是以内存为中心的分布式文件系统,拥有高性能和容错能力,
能够为集群框架(如Spark、MapReduce)提供可靠的内存级速度的文件共享服务。
Tachyon诞生于UC Berkeley的AMPLab。
Tez(DAG计算模型)
Tez是Apache最新开源的支持DAG作业的计算框架,它直接源于MapReduce框架,核心思想是将Map和Reduce两个操作进一步拆分,
即Map被拆分成Input、Processor、Sort、Merge和Output, Reduce被拆分成Input、Shuffle、Sort、Merge、Processor和Output等,
这样,这些分解后的元操作可以任意灵活组合,产生新的操作,这些操作经过一些控制程序组装后,可形成一个大的DAG作业。
目前hive支持mr、tez计算模型,tez能完美二进制mr程序,提升运算性能。