越来越多的应用涉及到大数据,这些大数据的属性,包括数量,速度,多样性等等都是呈现了大数据不断增长的复杂性,所以,普开大数据的分析方法在大数据领域就显得尤为重要,可以说是决定最终信息是否有价值的决定性因素。基于此,大数据分析的方法理论有哪些呢?以下是小编为你整理的怎样学大数据
大数据分析的五个基本方面
PredictiveAnalyticCapabilities(预测性分析能力)
数据挖掘可以让分析员更好的理解数据,而预测性分析可以让分析员根据可视化分析和数据挖掘的结果做出一些预测性的判断。
DataQualityandMasterDataManagement(数据质量和数据管理)
数据质量和数据管理是一些管理方面的最佳实践。通过标准化的流程和工具对数据进行处理可以保证一个预先定义好的高质量的分析结果。 AnalyticVisualizations(可视化分析)
不管是对数据分析专家还是普通用户,数据可视化是数据分析工具最基本的要求。可视化可以直观的展示数据,让数据自己说话,让观众听到结果。 SemanticEngines(语义引擎)
我们知道由于非结构化数据的多样性带来了数据分析的新的挑战,我们需要一系列的工具去解析,提取,分析数据。语义引擎需要被设计成能够从“文档”中智能提取信息。
DataMiningAlgorithms(数据挖掘算法)
可视化是给人看的,数据挖掘就是给机器看的。集群、分割、孤立点分析还有其他的算法让我们深入数据内部,挖掘价值。这些算法不仅要处理大数据的量,也要处理大数据的速度。
假如大数据真的是下一个重要的技术革新的话,我们最好把精力关注在大数据能给我们带来的好处,而不仅仅是挑战。
python
如果说R语言是一个神经质又可爱的高手,那么Python是它随和又灵活的表兄弟。作为一种结合了R语言快速对复杂数据进行挖掘的能力并构建产品的更实用语言,Python迅速得到了主流的吸引力。Python是直观的,并且比R语言更易于学习,以及它的生态系统近年来急剧增长,使得它更能够用于先前为R语言保留的统计分析。
“这是这个行业的进步。在过去的两年时间中,从R语言到Python已经发生了非常明显的转变,”Butler说。
在数据处理中,在规模和复杂性之间往往会有一个权衡,于是Python成为了一种折中方案。IPython notebook和NumPy可以用作轻便工作的一种暂存器,而Python可以作为中等规模数据处理的强大工具。丰富的数据社区,也是Python的优势,因为可以提供了大量的工具包和功能。
美国银行使用Python在银行的基础架构中构建新的产品和接口,同时也用Python处理财务数据。“Python广泛而灵活,因此人们趋之若鹜,”O’Donnell说。
不过,它并非最高性能的语言,只能偶尔用于大规模的核心基础设施,Driscoll这样说道。
Flume(日志收集工具)
Cloudera开源的日志收集系统,具有分布式、高可靠、高容错、易于定制和扩展的特点。
它将数据从产生、传输、处理并最终写入目标的路径的过程抽象为数据流,在具体的数据流中,数据源支持在Flume中定制数据发送方,从而支持收集各种不同协议数据。
同时,Flume数据流提供对日志数据进行简单处理的能力,如过滤、格式转换等。此外,Flume还具有能够将日志写往各种数据目标(可定制)的能力。
总的来说,Flume是一个可扩展、适合复杂环境的海量日志收集系统。当然也可以用于收集其他类型数据
Mahout(数据挖掘算法库)
Mahout起源于2008年,最初是Apache Lucent的子项目,它在极短的时间内取得了长足的发展,现在是Apache的顶级项目。
Mahout的主要目标是创建一些可扩展的机器学习领域经典算法的实现,旨在帮助开发人员更加方便快捷地创建智能应用程序。
Mahout现在已经包含了聚类、分类、推荐引擎(协同过滤)和频繁集挖掘等广泛使用的数据挖掘方法。
除了算法,Mahout还包含数据的输入/输出工具、与其他存储系统(如数据库、MongoDB 或Cassandra)集成等数据挖掘支持架构。
Oozie(工作流调度器)
Oozie是一个可扩展的工作体系,集成于Hadoop的堆栈,用于协调多个MapReduce作业的执行。它能够管理一个复杂的系统,基于外部事件来执行,外部事件包括数据的定时和数据的出现。
Oozie工作流是放置在控制依赖DAG(有向无环图 Direct Acyclic Graph)中的一组动作(例如,Hadoop的Map/Reduce作业、Pig作业等),其中指定了动作执行的顺序。
初级数据分析师基础技能(包括工具)学习
1主要有 Excel,Visio,Xmind,PPT的涉及图表数据分析方面的高级技巧,包括但不限于:数据透视表演练、Vision跨职能流程图演练、Xmind项目计划导图演练、PPT高级动画技巧等!
2.Tableau 商业智能与可视化应用实战
3. Echarts 从入门到上手实战
4.数据分析工具初级应用(Excel、Oracle、SPSS 初步)
如何成为一名初级数据分析师
初级数据分析师软技能学习:
1.数据分析分析思路以及步骤
2.需求分析思路(BRD,PRD,MRD)
3.竞品分析思路
4.产品规划与设计思路
如何成为一名初级数据分析师
中级数据分析师硬性技能学习:
1. 数据库技术(mysql,redis,excel)
2.大数据挖掘算法、(Apriori 算法、Tanagra 工具、决策树)
3.SPSS Modeler 数据挖掘
0如何成为一名中级数据分析师
中级数据分析加分技能学习:
1.Python 网络爬虫技术
2.机器学习扩展深入(Python 语言、算法、Numpy 库、MatplotLib)
3.人工智能之机器学习(Python高级数据分析库)
如何成为一名中级数据分析师
高级数据分析师高端技能学习:
1.硬技能 - Java 语言基础
2.大数据必备的数据结构与算法
3.硬技能 - Linux 必知必会
4.Hadoop 大数据开发技术(hadoop家族:Mapreduce,Spark,Storm等)